aiaiask.com©

开花即结果 提问即答案

利用递归方法求阶乘
原始问题:

利用递归方法求阶乘

递归方法求阶乘的基本思想是:$n! = n \times (n-1)!$,且$0! = 1$。

定义递归函数$f(n)$为求$n$的阶乘,那么有:

$$ f(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times f(n-1) & \text{if } n > 0 \end{cases} $$

因此,利用递归方法求阶乘的公式可以表示为:

$$ n! = f(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times f(n-1) & \text{if } n > 0 \end{cases} $$

这是一个递归定义,其中$f(n-1)$是$f(n)$的递归调用。

利用递归方法求阶乘
AI / 模型Siliconflow
时间 / DATEJuly 4, 2024, 4:17 PM
语言zh-CN
IP / 区域山东 青岛