洛伦兹方程求解与可视化分析
1. 洛伦兹方程为:
$$
\begin{cases}
\frac{dx}{dt} = \sigma(y-x) \\
\frac{dy}{dt} = x(\rho-z)-y \\
\frac{dz}{dt} = xy-\beta z
\end{cases}
$$
其中,$\sigma, \rho, \beta$ 为常数。
雅可比矩阵为:
$$
J = \begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\
\frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z}
\end{bmatrix}
$$
其中,$f_1 = \sigma(y-x), f_2 = x(\rho-z)-y, f_3 = xy-\beta z$。
计算过程如下:
$$
J = \begin{bmatrix}
-\sigma & \sigma & 0 \\
\rho-z & -1 & -x \\
y & x & -\beta
\end{bmatrix}
$$
2. 使用Matlab求解洛伦兹方程的代码如下:
```matlab
sigma = 10;
rho = 28;
beta = 8/3;
dt = 0.01;
t = 0:dt:50;
x = zeros(size(t));
y = zeros(size(t));
z = zeros(size(t));
x(1) = 1;
y(1) = 1;
z(1) = 1;
for i = 2:length(t)
x(i) = x(i-1) + sigma*(y(i-1)-x(i-1))*dt;
y(i) = y(i-1) + (x(i-1)*(rho-z(i-1))-y(i-1))*dt;
z(i) = z(i-1) + (x(i-1)*y(i-1)-beta*z(i-1))*dt;
end
plot(x,y)
xlabel('x')
ylabel('y')
title('Lorenz Attractor')
```
选取相对瑞利数为28,初始状态为$(1,1,1)$,得到的轨迹如下图所示:

3. 使用Matlab求解洛伦兹方程的代码如下:
```matlab
sigma = 10;
rho = 28;
beta = 8/3;
dt = 0.01;
t = 0:dt:50;
x1 = zeros(size(t));
y1 = zeros(size(t));
z1 = zeros(size(t));
x2 = zeros(size(t));
y2 = zeros(size(t));
z2 = zeros(size(t));
x1(1) = 1;
y1(1) = 1;
z1(1) = 1;
x2(1) = 1.01;
y2(1) = 1.01;
z2(1) = 1.01;
for i = 2:length(t)
x1(i) = x1(i-1) + sigma*(y1(i-1)-x1(i-1))*dt;
y1(i) = y1(i-1) + (x1(i-1)*(rho-z1(i-1))-y1(i-1))*dt;
z1(i) = z1(i-1) + (x1(i-1)*y1(i-1)-beta*z1(i-1))*dt;
x2(i) = x2(i-1) + sigma*(y2(i-1)-x2(i-1))*dt;
y2(i) = y2(i-1) + (x2(i-1)*(rho-z2(i-1))-y2(i-1))*dt;
z2(i) = z2(i-1) + (x2(i-1)*y2(i-1)-beta*z2(i-1))*dt;
end
plot(t,x1,'b',t,x2,'r')
xlabel('t')
ylabel('x')
title('Lorenz Attractor')
legend('Initial state: (1,1,1)','Initial state: (1.01,1.01,1.01)')
```
选取相对瑞利数为28,初始状态分别为$(1,1,1)$和$(1.01,1.01,1.01)$,得到的轨迹如下图所示:

免责声明:
以上内容除特别注明外均来源于网友提问,创作工场回答,未经许可,严谨转载。